H(t)=-4,9t^2+58,8t

Simple and best practice solution for H(t)=-4,9t^2+58,8t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4,9t^2+58,8t equation:



(H)=-4.9H^2+58.8H
We move all terms to the left:
(H)-(-4.9H^2+58.8H)=0
We get rid of parentheses
4.9H^2-58.8H+H=0
We add all the numbers together, and all the variables
4.9H^2-57.8H=0
a = 4.9; b = -57.8; c = 0;
Δ = b2-4ac
Δ = -57.82-4·4.9·0
Δ = 3340.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-57.8)-\sqrt{3340.84}}{2*4.9}=\frac{57.8-\sqrt{3340.84}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-57.8)+\sqrt{3340.84}}{2*4.9}=\frac{57.8+\sqrt{3340.84}}{9.8} $

See similar equations:

| 2x+6-4x-4=10 | | 3+16=5m+4 | | (15+0.5x)(40-2x)=0 | | 0,5x+x+3=-0,5x^2-2x+7 | | w–8=5 | | -5/w+17=-3 | | 8/n-3=-11 | | -6/v+2=1- | | 3/8y+45=6y | | y-6y-30=0 | | 10+6x=78 | | 8x+1+7x=12x | | 4(x^2)=6(2x) | | 5(x+1)-3=x-(2+x) | | x+1/x=0.78 | | 13^(x-3)=1 | | 14+7x=56-21 | | 15x+3.25=78.25 | | 104=52+13x | | (1/8)^2n=64^-3n | | 15x+325=78.25 | | 9+4l=-15 | | 4-x=-(x-4)* | | 2(2x-1)=4(x-2)* | | x^2+8x-41=7 | | 2x^2+15=−85 | | (7x+8)=(7x-1)=(5x+2) | | 3M+16=5m+4 | | C(30)=14x0.8 | | C(30)=14x0.8x | | b-2=b-2 | | -4x-16=-8 |

Equations solver categories